Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 256, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598148

RESUMO

A dual-signal ratiometric electrochemical aptasensor has been developed  for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced  the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.


Assuntos
Aflatoxina B1 , Fenotiazinas , Zeolitas , Arachis , Catálise , DNA
2.
Sci Total Environ ; 928: 172529, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631626

RESUMO

Herein, a study for the first application of a hybridization chain reaction, a 1,8-naphthalimides-DNA (NDs) intercalator, and DNA-dependent Prussian blue nanoflowers@PtPd materials (PBNFs@PtPd) in the development of a fluorescence-electrochemical (FL-EC) aptasensor. This construction establishes an efficient sensing platform for the detection of procymidone (PCM). In the context of the described experiment, dual-mode detection is achieved through the generation of FL signals by an aptamer labeled with a Cy5 moiety and the formation of DPV signals by the modification of a thionine-appended 1,8-naphthalimide (Thi-NDs). In the presence of PCM, specific recognition occurs, followed by the utilization of magnetic separation technology to release DNA1 (S1) and aptamer-Cy5 (Apt-Cy5), subsequently introducing them onto both fluorescence and EC platforms. The presence of S1 effectively activates hybridization chain reaction (HCR) for the electrode surface, thereby significantly increasing the binding sites for Thi-NDs and consequently greatly amplifying the response signal of differential pulse voltammetry (DPV). The developed FL-EC dual-mode sensing platform demonstrates high sensitivity in the detection of PCM, with the detection limits of 0.173 µg·ml-1 (within the detection range of 500 pg·ml-1 to 500 ng·ml-1) and 0.074 ng·ml-1 (within the detection range of 100 pg·ml-1 to 100 ng·ml-1), respectively. The designed dual-mode sensor exhibits notable characteristics, including high selectivity, reproducibility, synergy, and reliable monitoring/capability for PCM in real samples.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38640487

RESUMO

Balancing the accuracy and simplicity of aptasensors is a challenge in their construction. This study addresses this issue by leveraging the remarkable loading capacity and peroxidase-like catalytic activity of PtPdCu trimetallic nanoparticles, which reduces the reliance on precious metals. A dual-signal readout aptasensor for enrofloxacin (ENR) detection is designed, incorporating DNA dynamic network cascade reactions to further amplify the output signal. Exploiting the strong loading capacity of PtPdCu nanoparticles, they are self-assembled with thionine (Thi) to form a signal label capable of generating signals in two independent modes. The label exhibits excellent enzyme-like catalytic activity and enhances electron transfer capabilities. Differential pulse voltammetry (DPV) and square-wave voltammetry (SWV) are employed to independently read signals from the oxidation-reduction reaction of Thi and the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) by H2O2. The introduced DNA dynamic network cascade reaction modularizes sample processing and electrode surface signal generation, avoiding electrode contamination and efficiently increasing the output of the catalyzed hairpin assembly (CHA) cycle. Under optimized conditions, the developed aptasensor demonstrates detection limits of 0.112 (DPV mode) and 0.0203 pg/mL (SWV mode). Additionally, the sensor successfully detected enrofloxacin in real samples, expanding avenues for designing dual-mode signal amplification strategies.

4.
Int J Biol Macromol ; 254(Pt 2): 127746, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923041

RESUMO

Lateral flow immunoassay (LFIA) has been employed extensively for the rapid, accurate, and portable detection of foodborne toxins. Here, the platinum gold nanoflower core-shell (Pt@AuNF) nanozyme with excellent optical properties, good catalytic ability and controllable reaction conditions were prepared to effectively improve the performance of lateral flow immunoassay (LFIA) strips. The Pt@AuNF nanozyme and horseradish peroxidase (HRP) combined with monoclonal antibody were used as signal probes based on the dual enzymes catalytic signal amplification strategy to detect Zearalenone sensitively. Dual enzymes catalyze the decomposition of hydrogen peroxide into hydroxyl radicals, and under the influence of hydroxyl radicals, colorless 3,3',5,5' -tetramethylbenzidine (TMB) is oxidized to blue ox-TMB, which is superimposed on the strips for signal amplification to broaden the detection range. The limit of detection (LOD) of the Pt@AuNF-HRP labeled LFIA strips after signal amplification was 0.052 ng/mL, and the detection range was 0.052-7.21 ng/mL. Compared with the Pt@AuNF labeled strips, while reducing the probes amount by half to achieve antibody conservation, the detection range was expanded by 5-fold based on achieving improved sensitivity. The study provided a meaningful reference for expanding the detection range based on immunoassay.


Assuntos
Nanopartículas Metálicas , Zearalenona , Peroxidase do Rábano Silvestre , Limite de Detecção , Imunoensaio , Ouro
5.
Anal Chem ; 96(1): 92-101, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38110328

RESUMO

Herein, we synthesized anemone-like copper-based metal-organic frameworks (MOFs) loaded with gold-palladium nanoparticles (AuPd@Cu-MOFs) and polyethylenimine-reduced graphene oxide/gold-silver nanosheet composites (PEI-rGO/AuAg NSs) for the first time to construct the sensor and to detect T-2 toxin (T-2) using triple helix molecular switch (THMS) and signal amplification by swing-arm robot. The aptasensor used PEI-rGO/hexagonal AuAg NSs as the electrode modification materials and anemone-like AuPd@Cu-MOFs as the signal materials. The prepared PEI-rGO/hexagonal AuAg NSs had a large specific surface area, excellent electrical conductivity, and good stability, which successfully improved the electrochemical performance of the sensors. The AuPd@Cu-MOFs with high porosity provided a great deal of attachment sites for the signaling molecule thionine (Thi), thereby increasing the signal response. The aptasensor developed in this study demonstrated a remarkable detection limit of 0.054 fg mL-1 under optimized conditions. Furthermore, the successful detection of T-2 in real samples was achieved using the fabricated sensor. The simplicity of the THMS-based method, which entails modifying the aptamer sequence, allows for easy adaptation to different target analytes. Thus, the sensor holds immense potential for applications in quality supervision and food safety.


Assuntos
Anemone , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Estruturas Metalorgânicas , Robótica , Toxina T-2 , Estruturas Metalorgânicas/química , Cobre/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Paládio , Grafite/química , Ouro/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
6.
Biosens Bioelectron ; 241: 115690, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716157

RESUMO

Herein, a novel magneto-mediated electrochemical aptasensor using the signal amplification technologies of DNAzyme motor and electrocatalyst for vanilla (VAN) detection was fabricated. The D/B duplex, formed by the DNAzyme motor that was each silenced by a blocker, and hairpin DNA1 (H1) containing adenosine ribonucleotide (rA) site were tethered on the sites of the gold nanoparticles@hollow porphyrinic-Metal-organic framework/polyethyleneimine-reduced graphene oxide (AuHPCN-222/PEI-rGO)-modified gold electrode (AuE). Then, after homogeneous and specific recognition in the presence of the VAN, trigger DNA was released and enriched by magnetic separation technique and introduced to the sensing platform to activate the DNAzyme motor, which efficiently improved target recognition capability and avoided the obstacle of multiple DNA strands tangling. More interestingly, the activated DNAzyme motor could repeatedly bind to and cleave H1 in the presence of Mg2+, leading to the exposure of a plethora of capture probes. The thionine (Thi) functionalized hairpin DNA2 (H2)-Pt@Ni-Co as signal probes could hybridize with capture probes. Additionally, the Pt@Ni-Co electrocatalysts presented catalytic activity towards Thi to obtain stronger electrochemical signals. VAN with concentrations ranging from 1 × 10-6 to 10 µM was determined and a detection limit was down to 0.15 pM. The designed electrochemical sensor was highly selective with specificity, stability, reproducibility, and reliable capability for monitoring the VAN in real samples.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , Vanilla , Ouro , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Limite de Detecção , DNA , Técnicas Eletroquímicas/métodos
7.
J Mater Chem B ; 11(36): 8679-8688, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37641527

RESUMO

Herein, we have used DNA-silver nanocluster (DNA-AgNC) signal probes with both electrochemical and fluorescent signals for the first time to construct an electrochemical-fluorescent dual-mode sensor. The sensor has an easy-to-prepare dual-signal property combined with the magnetic separation technique for dual-mode detection of ochratoxin A (OTA). In the absence of OTA, the DNA strand used to synthesize AgNCs was not available in the system after magnetic separation. DNA-AgNCs probes could not be synthesized in the system, resulting in low fluorescence and electrochemical signals. In the presence of OTA, it led to the shedding of sulfhydryl-modified and cytosine-rich DNA (C-DNA). DNA-AgNCs probes with high fluorescence and electrochemical signals were formed by adding AgNO3 and NaBH4 to the supernatant after magnetic separation. Dual-mode detection of OTA was achieved by the signal response of fluorescence and electrochemistry. The detection ranges were 2.5 × 10-4-50 ng mL-1 and 2.5 × 10-4-25 ng mL-1 in the fluorescence mode and electrochemical mode with detection limits of 0.11 pg mL-1 and 0.025 pg mL-1, respectively. Meanwhile, the dual-mode sensor displayed better specificity, repeatability and reproducibility than conventional electrochemical and fluorescent single-mode sensors. The results of the spiked peanut and wheat flour detection showed that the fluorescence and electrochemical modes of the sensor exhibited satisfactory average recoveries.


Assuntos
Farinha , Triticum , Reprodutibilidade dos Testes , Corantes , Citosina , DNA
8.
Mikrochim Acta ; 190(8): 313, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470836

RESUMO

A novel three-dimensional (3D) porous nitrogen-sulfur co-doped carbon (N-S-C) mesh was synthesized and used for the first time as the quenching material to construct a fluorescent aptasensor for ochratoxin A (OTA) detection. The fluorescent aptasensor with enzyme-free signal amplification strategy was developed by using cDNA as a promoter to trigger hybridization chain reaction (HCR), which effectively improved the sensitivity of this aptasensor. In the absence of OTA, 3D porous N-S-C mesh can adsorb carboxyfluorescein FAM-labeled hairpin DNA1 (H1-FAM) and hairpin DNA2 (H2) and quench the fluorescence of FAM. In the presence of the OTA, the OTA specifically binds to the aptamer strand and the DNA duplex undergoes dissociation. The released cDNA in turn serves as a promoter for HCR, and the strand assembly of H1-FAM and H2 is triggered by the promoter to generate long-strand DNA polymers via HCR, resulting in an increasing fluorescent signal. Under optimal conditions, there was a good linear relationship between lgCOTA and fluorescence intensity difference in the range 0.01-500 ng/mL (R2 = 0.993), and the detection limit was 2.7 pg/mL. The designed sensor platform was applied to determine spiked OTA in peanut, wheat flour, corn flour, black tea, and wine with recoveries in the range of 94.4-119.6%.


Assuntos
Aptâmeros de Nucleotídeos , Carbono , DNA Complementar , Nitrogênio , Porosidade , Farinha , Triticum , DNA , Corantes
9.
Bioelectrochemistry ; 152: 108452, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37137224

RESUMO

The presence of heavy metals in the ecological environment is a serious threat to human health. Therefore, it is very important to establish a simple and sensitive method for the detection of heavy metals. Currently, most of the methods are single-channel sensing, and these methods are prone to false-positive signals, which reduces the accuracy. In this work, Pb2+-DNAzyme was immobilized on magnetic beads (MBs) using a linkage of biotin and streptavidin and successfully applied to the construction of a fluorescent/electrochemical dual-mode (DM) biosensor. The supernatant after magnetic separation formed a double strand on the electrode, which was combined with methylene blue (MB) for electrochemical detection (EC). At the same time, FAM-d was added to the precipitate, and after magnetic separation, the supernatant was subjected to fluorescent detection (FL). Under optimal conditions, the signal response of the constructed dual-mode biosensor showed a good linear relationship with the concentration of Pb2+. The DNAzyme-based dual-mode biosensor achieved sensitive and selective detection of Pb2+ with good accuracy and reliability, opening a new way for the development of biosensing strategies for the detection of Pb2+. More importantly, the sensor has high sensitivity and accuracy for the detection of Pb2+ in actual sample analysis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Humanos , Chumbo , Reprodutibilidade dos Testes , Limite de Detecção , Técnicas Biossensoriais/métodos
10.
Mikrochim Acta ; 190(4): 120, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884101

RESUMO

T-2 toxin is the most potent and toxic mycotoxin, produced by various Fusarium species that can potentially affect human health, and widely exists in field crops and stored grain. In this work, an electrochemical aptasensor with nonenzymatic signal amplification strategy for the detection of T-2 toxin is presented, using noble metal nanocomposites and catalytic hairpin assembly as signal amplification strategy. Silver palladium nanoflowers and gold octahedron nanoparticles@graphene oxide nanocomposites are used for synergistic amplification of electrical signals. Simultaneously, the catalytic hairpin assembly strategy based on artificial molecular technology was introduced to further amplify the signal. Under optimal conditions, T-2 toxin was measured within a linear concentration range 1 × 10-2 ~ 1 × 104 pg·mL-1 with an extremely low detection limit of 6.71 fg·mL-1. The aptasensor exhibited high sensitivity, good selectivity, satisfactory stability, and excellent reproducibility. Moreover, this method had high accuracy in detecting T-2 toxin in beer sample. The encouraging results show the potential application in foodstuff analysis. A dual signal amplification electrochemical biosensor for the detection of T-2 toxins was constructed, through the signal amplification of noble metal nanomaterials and CHA strategy.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Toxina T-2 , Humanos , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanocompostos/química
11.
Sci Total Environ ; 875: 162561, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870493

RESUMO

Vomitoxin (DON) residues in grains are of great concern to public health. Herein, a label-free aptasensor was constructed to detect DON distributed in grains. Cerium-based metal-organic framework composite gold nanoparticles (CeMOF@Au) were used as substrate materials to facilitate electron transfer and provided more binding sites for DNA. The separation of DON-aptamer (Apt) complex and cDNA was achieved by magnetic separation technique based on magnetic beads (MBs), ensuring the specificity of the aptasensor. Exonuclease III (Exo III)-assisted cDNA cycling process strategy would be triggered when cDNA was separated and introduced to the sensing interface for further signal amplification. Under optimal conditions, the constructed aptasensor presented a wide detection range from 1 × 10-8 mg·mL-1 to 5 × 10-4 mg·mL-1 for DON, and the detection limit was 1.79 × 10-9 mg·mL-1, including a satisfactory recovery in cornmeal sample spiked with DON. The results showed that the proposed aptasensor had high reliability and promising application potential in detecting DON.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , DNA Complementar , Ouro/química , Reprodutibilidade dos Testes , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Limite de Detecção
12.
Anal Methods ; 15(10): 1306-1314, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36805075

RESUMO

Herein, an electrochemical biosensor was developed based on a magnetic separation strategy for the sensitive detection of the heavy metal Pb2+. The specific binding of Pb2+ and the aptamer (Apt) is used to trigger the release of the complementary chain (cDNA) on the magnetic bead system. The cDNA completes base complementary pairing with hairpins HP1 and HP2 at the electrode to form a Y-DNA structure. Then, the Y-DNA runs continuously with the assistance of the signal tag methylene blue (MB) and the current signal increases. However, in the absence of Pb2+, cDNA cannot be released and the Y-DNA structure cannot be formed on the electrode, resulting in a relatively low current signal. Under the optimal experimental conditions, the reduced peak current difference (ΔI) showed a good linear relationship with lg CPb2+ between 0.1 and 1000 nM, with a detection limit of 5.9 pM. In addition, the stability, reproducibility and detection capability of the sensors were investigated with satisfactory results.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Metais Pesados , DNA Complementar , Reprodutibilidade dos Testes , Chumbo , Técnicas Eletroquímicas/métodos , Limite de Detecção , DNA/química , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Fenômenos Magnéticos
13.
Anal Chim Acta ; 1246: 340888, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764774

RESUMO

Mycotoxins contaminated in agricultural products are often highly carcinogenic and genotoxic to humans. With the streamlining of the food industry chain and the improvement of food safety requirements, the traditional laboratory testing mode is constantly challenged due to the expensive equipment, complex operation steps, and lag in testing results. Therefore, rapid detection methods are urgently needed in the food safety system. This review focuses on the latest strategies that can achieve rapid and on-site testing, with particular attention to the nanomaterials integrated biosensors. To provide researchers with the latest trends and inspiration in the field of rapid detection, we summarize several strategies suitable for point of care testing (POCT) of mycotoxins, including enzyme-linked immunoassay (ELISA), lateral flow assay (LFA), fluorescence, electrochemistry, and colorimetry assay. POCT-based strategies are all developing towards intelligence and portability, especially when combined with smartphones, making it easier to read signals for intuitive access and analysis of test data. Detection performance of the devices has also improved considerably with the integration of biosensors and nanomaterials.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Nanoestruturas , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Micotoxinas/análise , Testes Imediatos , Imunoensaio/métodos
14.
Anal Chim Acta ; 1239: 340714, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628769

RESUMO

Lead ion (Pb2+) is one of the most toxic and widely polluted heavy metal ions. Given the potential health risks and economic losses associated with Pb2+, the rapid detection of Pb2+ using fluorescent aptasensors is of significant importance in evaluating food safety. A rapid, facile and economic fluorescent aptasensor using convenient paper as the sensing substrate was designed to high-throughput detect Pb2+ in complex samples within about 45 min. The Pb2+ changed the conformation of FAM-modified Apt from a random coil to a stable G-quadruplex structure. And then Dabcyl-labeled cDNA was added to form double-stranded DNA with the Apt that did not form a G-quadruplex structure, resulting in a weak fluorescence due to the fluorescence resonance energy transfer (FRET). The fluorescent aptasensor showed a positive correlation with Pb2+ concentration, and a linear relationship was obtained in the range of 0.01-10 µM with LOD of 6.1 nM. In addition, this method has been successfully used for the determination of Pb2+ in water, soil and various foods containing complex substrates. Meanwhile, the high-throughput detection of Pb2+ has also reached an acceptable level. Therefore, this convenient strategy has potential application value for on-site rapid detection of Pb2+.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Água , Chumbo , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes , Limite de Detecção
15.
Bioelectrochemistry ; 149: 108312, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36283191

RESUMO

Here, a label-free impedance-based electrochemical sensor was developed for the quantitative detection of Pb2+. Using conductive gold nanomaterials as electrode substrate materials can provide sensors with larger specific surface area, action sites and excellent conductivity. DNA nanostructures are used for the determination of biomolecules due to their good properties. The Y-DNA structure is formed by the annealing of three DNA sequences, which acts as a stable structure and forms a dendritic structure in combination with the hybrid chain reaction. In the presence of the target Pb2+, it induces the conversion of specific aptamers into G-quadruplexes, resulting in HCR and Y-DNA loading on the electrodes and a significant change in the impedance value signal. Therefore, the proposed biosensor realizes the quantitative detection of Pb2+. Under the optimal experimental conditions, the concentration of Pb2+ exhibited a linear correlation range from 0.5 to1000 nmol/L with a limit of detection (LOD) of 0.38 nmol/L. The designed sensors have good recoveries in real samples (tap water and tea). This flexible experimental protocol has broad application prospects.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Chumbo , Impedância Elétrica , DNA/química , Técnicas Biossensoriais/métodos , Ouro/química , Limite de Detecção , Nanoestruturas/química , Eletrodos , Técnicas Eletroquímicas/métodos
16.
Bioelectrochemistry ; 149: 108322, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36379195

RESUMO

Herein, a novel electrochemical apta-assay based on hybridization chain reaction (HCR) and aflatoxin B1-driven Ag-DNAzyme was prepared. The combination of HCR and Ag-DNAzyme was designed for the first time as a dual signal amplification strategy for the detection of mycotoxins. The substrate DNA (sDNA) was fixed to the electrode surface, which contained the RNA A (rA) site and HCR initiation sequence. The sDNA opened the hairpin DNA structures and triggered a cascade of hybridization events. The DNA double strands formed by the HCR bound large amounts of methylene blue (MB). Aptamer and complementary DNA bound to Ag+ by C-Ag+-C complexes. AFB1 can drive Ag+ shedding, and Ag+ induced Ag-DNAzyme to shear the rA site of sDNA. The amount of binding MB decreased and the current signal decreased. Replaced biological enzymes with metal ion-mediated DNAzyme enhanced the stability of the prepared sensors while reducing the preparation cost. An adequate determination of AFB1 in corn flour, walnut powder, and other actual samples are validated, which indicated the good accuracy and potential application in real samples. The strategy is characterized by simple operation, good stability, and low preparation cost, and has good application prospects in food safety and quality control.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/química , Aflatoxina B1/análise , Técnicas Eletroquímicas , DNA/química , Azul de Metileno/química , Limite de Detecção , Aptâmeros de Nucleotídeos/química
17.
Anal Chim Acta ; 1232: 340470, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257744

RESUMO

A novel ultrasensitive electrochemical aptasensor was proposed for quantitative detection of Cd2+. To this end, flower-like polyethyleneimine-functionalized molybdenum disulfide-supported gold nanoparticles (PEI-MoS2 NFs@Au NPs) were used as substrates for the modification of bare gold electrodes (AuE). PEI-MoS2 NFs@Au NPs not only possessed excellent biocompatibility and large specific surface area to enhance the cDNA loading capacity, but also possessed good conductivity to accelerate the electron transfer rate. Furthermore, the preparation of dendritic platinum-palladium nanoparticles (PtPd NPs) can effectively load Cd2+-aptamer. Thionine and aptamers were loaded onto PtPd NPs to construct Thi-PtPd NPs-aptamer signal probes. The signal probes were captured by the cDNA immobilized on the electrode via base-pairing rule, and the signal of Thi was detected by differential pulse voltammetry (DPV). In the presence of Cd2+, aptamer-cDNA unwinded, and the combination of aptamer and Cd2+ caused the signal probes to fall off the electrode and the electrical signal decreases. Under optimal conditions, the proposed aptasensor exhibited a linear relationship between the logarithm of Cd2+ concentration and the current response over a wide range of 1 × 10-3 nM to 1 × 102 nM, with a detection limit of 2.34 × 10-4 nM. At the same time, the aptasensor was used to detect Cd2+ in tap water with satisfactory results. In addition, it has good reproducibility, selectivity and stability, and has broad application prospects in heavy metal analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Platina , Ouro , Cádmio , Paládio , Molibdênio , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Polietilenoimina , DNA Complementar , Reprodutibilidade dos Testes , Água , Limite de Detecção
18.
Anal Methods ; 14(39): 3831-3839, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36168770

RESUMO

Zearalenone (ZEN), also known as an F-2 toxin, is a secondary metabolite in the toxic Fusarium species with estrogen properties. ZEN and its derivatives can cause developmental and reproductive disorders in humans and other mammals. In this study, colloidal Au spheres (AuSPs) and Au nanoflowers (AuNFs) were used as signal labels to detect ZEN in cereals, and the critical factors affecting the sensitivity of the immunochromatographic strip (ICS), namely the volume of antigen, antibody, and probe quantities were optimized and compared in detail. Since the large specific surface area of AuNFs reduces the steric hindrance of proteins, it is more conducive to improving the fixation rate of antibodies and proteins. Compared with the traditional colloidal AuSP immunochromatographic strip (AuSP-ICS), the volume of the antibody used in the AuNF immunochromatographic strip (AuNF-ICS) was 0.6 times that in the AuSPs-ICS. At the same antigen volume, a lower amount of probe can achieve the desired visual detection effect and higher sensitivity. For the AuNF-ICS, the limit of detection (LOD) was as low as 0.08 ng mL-1. ZEN could be detected quickly and accurately from 0.08-10.2 ng mL-1. And the AuNF-ICS had a high degree of specificity and sensitivity to ZEN. In summary, the AuNF-ICS serves as a valuable tool in large-scale on-site detection of ZEN.


Assuntos
Zearalenona , Animais , Anticorpos/análise , Cromatografia de Afinidade/métodos , Grão Comestível/química , Estrogênios/análise , Humanos , Limite de Detecção , Mamíferos , Zearalenona/análise
19.
Anal Chem ; 94(37): 12866-12874, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069149

RESUMO

Developing rapid detection technology for adenosine triphosphate (ATP) is crucial in quality supervision and food safety. Herein, an electrochemical aptasensor based on an aptazyme-catalyzed signal amplification strategy is constructed for ATP detection using polyethyleneimine-functionalized molybdenum disulfide (PEI-MoS2)/Au@PtPd nanobipyramids (MoS2/Au@PtPd NBPs) as a modification material. Additionally, a novel kind of nitrogen-rich covalent organic framework (COF) is prepared using melamine and cyanuric acid (MCA). We synthesize MCA and the Co-based metal organic framework (Co-MOF) as the signal label. Due to the fact that π-π stacking interactions of Co-MOF@MCA can expand the load efficiency and surface concentration of the signal label, the signal response is an order of magnitude higher than that of Co-MOF or MCA as the signal label. Target ATP changes the conformation of the aptazyme, and it becomes activated. With the assistance of metal ions, the signal label is circularly cleaved, causing an amplification of the signal. Among them, MoS2/Au@PtPd NBPs have a large specific surface area and good electrical conductivity and can carry substantial DNA strands and amplify the redox signal of methylene blue (MB). Under optimal conditions, the aptasensor can detect ATP from 10 pM to 100 µM with a low limit of detection of 7.37 × 10-10 µM. Therefore, the novel aptasensor has extensive application prospects in quality supervision and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanoestruturas , Trifosfato de Adenosina , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Azul de Metileno , Molibdênio/química , Nanoestruturas/química , Nitrogênio , Polietilenoimina , Triazinas
20.
Anal Chim Acta ; 1226: 340272, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36068066

RESUMO

Aflatoxin B1 (AFB1) has strong carcinogenicity and toxicity, so it is necessary to develop a highly sensitive detection method. In this paper, a novel nitrogen-doped carbon supported palladium (C-N-Pd) material was synthesized and firstly used as the energy receptor for fluorescent aptasensor. Using C-N-Pd as a novel quenching material and exonuclease Ⅲ (Exo III) as assisted signal amplification, a fluorescent aptasensor for AFB1 detection was constructed. Compared with the sensor without enzyme, the fluorescence intensity obtained by the sensor with Exo III increased by 74.7%. The fabricated fluorescent aptasensor exhibited a good selectivity toward AFB1 with a limit of detection (LOD) as low as 9 pg mL-1. Moreover, the designed aptasensor was successfully utilized to detect AFB1 in spiked corn, peanut and wine samples, and the LOD is 15 pg mL-1, 13 pg mL-1 and 18 pg mL-1, respectively. In addition, the aptasensor was also compared with HPLC method, and the good agreement was found between them.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aflatoxina B1/análise , Técnicas Biossensoriais/métodos , Carbono , Exodesoxirribonucleases , Ouro , Limite de Detecção , Nitrogênio , Paládio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...